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1 Introduction

This paper presents my effort to model students’ evolving knowledge states during skill
acquisition using Bayesian Knowledge Tracing (BKT). Specifically, the BKT Hidden
Markov Model (HMM) is employed to predict the probability of correctly applying a
skill as a function of the number of prior opportunities to practice that skill. This model-
ing approach utilizes synthetic data generated based on BKT and Item Response Theory
(IRT) assumptions, which simulate a student’s knowledge trajectory and provide a con-
textual estimation of these probabilities. The process begins with a predefined prior
probability representing whether the student initially knows a given concept. The mod-
els are also evaluated on two real-world datasets, discussed later in the paper.

Five models were trained to estimate student knowledge from observed responses, in
addition to a baseline approach. These models include Bernoulli, Logistic Regression,
Average Response, Bayesian Knowledge Tracing (BKT), and Clustered BKT. The re-
sults indicate that the BKT and Clustered BKT models consistently outperformed the
other approaches across all four datasets.

2 Related Work

Since its introduction, the Bayesian Knowledge Tracing (BKT) model has been widely
used in studies of student learning and in various intelligent tutoring systems. Its flex-
ibility allows for more complex configurations to accommodate diverse learning models.
Effective knowledge tracing can enable personalized learning experiences by recommend-
ing resources tailored to individual student needs and skipping content that may be too
easy or too difficult. This approach facilitates efficient adaptive learning.

Researchers have primarily utilized BKT in two forms: the Hidden Markov Model (HMM)
and the Knowledge Tracing Algorithm [I]. The HMM version of BKT predicts the prob-
ability that a student will correctly apply a skill when given the opportunity [2]. The
simplicity of the BK'T model allows for analytical solutions to the HMM.

Further advancements in knowledge tracing include Deep Knowledge Tracing (DKT),
proposed by Piech et al., which demonstrates significantly better results than traditional
models [3]. DKT employs flexible recurrent neural networks (RNNs) to model knowledge
tracing over time. These models represent latent knowledge states and their temporal



dynamics using large vectors of artificial neurons. Unlike traditional BKT, which relies
on hard-coded initial values, DKT learns latent variable representations of student knowl-
edge directly from the data.

3 Datasets

I tested the models on four different datasets, two of which were synthetic. Below is the
description of each dataset.

e Synthetic data generated according to IRT assumptions: Virtual students
learning virtual concepts were simulated, and the accuracy of predictions for their
responses was tested in this controlled setting. A total of 500 synthetic students
and 10 concepts were generated. Each question was associated with a specific con-
cept and difficulty level. Using the IRT (Item Response Theory) model’s "squeezed
sigmoid” function, the probability of a student correctly answering a question was
modeled as follows:

1
1+ edifficulty—skill *

P(correct|skill, difficulty) = 0.25 4 0.75 -

For a fixed concept difficulty level, this probability could take on only one of two
values, corresponding to knowledge states of 1 (know) and 0 (don’t know). Students
had closely correlated prior per-concept knowledge and learning rate parameters.

e Synthetic data generated according to BKT assumptions: Based on BKT
assumptions, which assert that students do not forget a concept once learned, stu-
dents’ knowledge of different concepts was modeled using a Markov chain between
“don’t know” and “know” states. The emission states for the HMM were “correct”
or “incorrect” (i.e., 1 or 0). Sequences of emissions were generated from the Markov
chain for 500 virtual students and 10 virtual concepts.

e KDD Bridge to Algebra 2006—2007: This real dataset [4] was sourced from the
KDD Cup, an annual Data Mining and Knowledge Discovery competition organized
by ACM SIGKDD. The full dataset contained 808 concepts and 5968 students. To
reduce execution time, a subset of 10 concepts and 500 students was used. Two
thresholds, ¢; and t,, were applied to ensure sufficient data for each concept. The
first threshold, 1, checked the number of students who answered questions for a
particular concept, and concepts with fewer than t; students were dropped. The
second threshold, t,, ensured each student answered a sufficient number of ques-
tions per concept; students who answered fewer than ¢, questions for a concept were
dropped. The models were then tested on the remaining data, ensuring a balanced
subset.

e Assistments: Similar to the KDD Cup data, a subset of this real dataset [5] was
used. The full dataset included 125 concepts and 4218 students. A subset of 10
concepts and 1678 students was selected, applying the same thresholds for students
per concept (t;) and questions answered per student per concept (f3) to ensure



sufficient data for testing.

The data structure used in this study is organized as follows: A group of n students
answers a set of p problems from c¢ different concepts. Each student’s responses to prob-
lems for each concept are stored as a vector a, where a € R? and a; € {0,1}, with 0
representing an incorrect answer and 1 representing a correct answer. For example, if a
student answers a series of 6 questions for the concept ”long division” and gets the first
3 incorrect and the last 3 correct, their response vector would be [0,0,0,1,1,1]. Each
concept is represented as a matrix M € R"*P| where each row corresponds to a student
and each column corresponds to a question.

4 Methods

The following problem is addressed: given student responses to a series of questions on
a number of concepts, which concepts does the student know? Framed this way, student
knowledge on a particular concept can be modeled as a latent variable, while answers to
questions on that particular concept can be modeled as observed variables. To address
this, six models were trained to estimate student knowledge from observed responses.
Each model differs in its underlying assumptions. The major variations are as follows:

e The Baseline, Bernoulli, Logistic Regression, and Bayesian Knowledge Tracing
(BKT) models assume that students are identical (i.e., they do not model per-
student parameters). In contrast, the Average Response and Clustered BKT mod-
els account for differences between students.

e The Baseline and Average Response models do not consider concepts (i.e., they do
not model concepts explicitly). The other four models train separate models for
each concept.

Each model provides an estimate of a student’s knowledge state on a particular concept at
two key points: (1) before the student has attempted any questions on that concept and
(2) immediately after the student answers a question on that concept. These estimates
are used to calculate the probability that the student will answer the question correctly,
denoted as P(correct). This probability is then used to predict the student’s response.

Finally, the predicted answer sequence is compared to the actual answer sequence to
evaluate the effectiveness of each model.

4.1 Baseline

A simple baseline model was implemented where P(correct) = 1. This model predicts
that all students answer every question correctly. It served as a lower bound for compar-
ison against all other models.



4.2 Bernoulli

A separate Bernoulli model was trained for each concept in the data. In this model,
P(correct,) = ¢y, where ¢, is the percentage of correct answers on that concept in the
training data. If there are ¢ concepts in the training data, ¢ distinct ¢’s are learned.
This model assumes that all students are identical; hence, predictions for a question on
concept k use ¢y, regardless of the student.

4.3 Logistic Regression

For each concept, P(correct) is modeled using a logit link with the number of questions
the student has seen for that concept as the sole independent variable. This model also
assumes that students are identical.

4.4 Average Response

For each concept k, P(correct;) is modeled per student as the student’s percentage of
correct answers on that concept up to the present point. For instance, if a student
is presented with a question on the concept ”Quadratic Equation,” the probability is
calculated as:

_ Number of prior correct answers on 'Quadratic Equation’
~ Number of total prior questions on ’Quadratic Equation’

P(CorreCtQuadratic Equation)

4.5 Bayesian Knowledge Tracing

In Bayesian Knowledge Tracing (BKT), one model is fit per concept, treating all students
as identical. Furthermore, a two-state learning model is assumed. Specifically, for a given
concept, it is assumed that the student is either in a "knowing” state or a "not-knowing”
state. A student can transition from not knowing to knowing each time they answer a
question on that concept. In BKT, it is assumed that once a student learns a concept,
they never forget it. Additionally, the model accounts for the probability that a student
answers incorrectly despite knowing the concept (called a slip) and the probability that
a student answers correctly despite not knowing the concept (called a guess). The pa-
rameters for this model are summarized as follows:

e P(LF): The probability that the student knows concept ¢ when answering the kth
question on that concept.

e P(L%): The probability that the student knows concept ¢ before answering any
questions on that concept (a special case of the previous probability).

e P(T°): The probability of learning concept ¢ when answering a question on that
concept.



e P(G°): The probability of guessing correctly on concept ¢ if in the not-knowing
state.

e P(S°): The probability of answering incorrectly (slipping) on concept ¢ despite
being in the knowing state.

There are two distinct stages to using the BKT model. First, the parameters for each
model are learned from the training data. Second, these models are used to infer a stu-
dent’s knowledge state as they work through questions.

4.5.1 BKT as a Hidden Markov Model

The model described in the previous sections is a Hidden Markov Model (HMM) with
the following parameters. Modeling the problem as an HMM allows the use of the EM
algorithm to learn prior probabilities, transition probabilities, and emission probabilities
from the training data.

(a) Priors (IT) (b) Transitions (A) (c) Observations (B)
to known & to unknown right & wrong
known p(Lo) from known 1 0 known |1—p(S)| p(S)

unknown | 1 — p(Ly) from unknown | p(T") | 1 —p(T) unknown | p(G) | 1—p(G)

Table 1: BKT parameters in matrix form.

4.5.2 Updating Student Knowledge

Given an observation of the student’s response at time opportunity k (correct or incor-
rect) on concept ¢, the probability P(LF) that a student knows concept ¢ is calculated
using Bayes’ rule. When a correct response is observed, this probability is given by:

P(Lg) - (1 — P(5%))
P(correctk)

When an incorrect response is observed, this probability is given by:

P(L¥|correct?) =

P(L¢) - P(5°)

P(LF|incorrect®) = .
(Lel ) P(incorrect”)

Finally, the student’s knowledge of concept ¢ is updated based on their interaction with
the system. This updated estimate is the sum of two probabilities: the posterior probabil-
ity that the student already knew the concept (based on the evidence) and the probability
that the student did not know the concept but was able to learn it:

P(L'j) = P(Llj_1|evidence]j_1) +(1— P(L]j_1|evidence]j_1)) - P(T°).




4.5.3 Making Predictions with BKT

The probability of a student answering a question on concept ¢ correctly at time oppor-
tunity k is given by:

P(correct?) = P(LF) - (1 — P(S°)) + (1 — P(LF)) - P(G®).

5 Clustered Bayesian Knowledge Tracing

In Clustered BKT, students are first clustered into distinct groups, and a distinct set of
HMMs is trained for each group. For instance, if students are clustered into g groups and
there are ¢ concepts in the data, a total of ¢ - ¢ models are trained (as opposed to the ¢
models in standard BKT).

Initially, students were represented as n-dimensional vectors, and k-means clustering was
used to divide them into groups. However, when this approach did not provide any
additional gains over BKT, a pseudo-clustering algorithm was implemented as follows.
Students in the training data were first divided using a median split based on the per-
centage of total correct answers across all concepts. Subsequently, one HMM per group
per concept was trained, resulting in double the number of models compared to standard
BKT.

This method assumes the presence of high-achieving and low-achieving students in the
data. It further assumes that the BK'T parameters that best model the high-achieving
group differ from those that best model the low-achieving group.

5.1 Making Predictions with Clustered BKT

Predictions for novel answer sequences were made such that at each index £, the percent-
age of correct answers up to k£ determined which HMM'’s predicted state sequence was
used to predict the next emission. Once the model was selected, the method described
in the BKT section above was used to compute P(correcty).

6 Results

Each of the five models was evaluated on all four datasets, resulting in a total of 20
combinations. Monte Carlo cross-validation was used for evaluation, where at each itera-
tion, the data was pointwise randomly split into a 90 : 10 training-to-validation ratio. In
each dataset, each training point represented a student sequence of correct or incorrect
answers. At each iteration, a random set of students (real or synthetic, depending on the
dataset) was used to train the algorithm, while a separate random set of students was
used for evaluation.
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Figure 1: Comparison of ROC curves for the Assistments and KDD datasets. This figure
demonstrates performance insights across the two datasets.

Each model was trained on the training set and evaluated on the validation set as follows:
each sequence was fed into the model answer-by-answer, and at each answer index i, the
model output its estimate of the probability that the i 4+ 1-th answer would be correct
(ie., al).

The model’s outputs formed a vector of probabilities p;, where p; € [0,1]Vi, which was
compared to the true sequence of outputs x;, where x; € {0, 1}Vi. Metrics for each model
were calculated relative to these vectors and averaged over all student sequences in the
validation set. The mean-squared error (MSE) was calculated as:

=l
For the error rate, a threshold of 0.5 was set, and the proportion of answer indices where
the rounded probability did not match the true output was reported. For the AUROC
curve, Matlab’s library was used to generate false-positive and true-positive rates for var-
ious threshold values, and the area under the resulting curve was calculated.

Results shown in the graphs (Figure represent 100-iteration Monte Carlo cross-validation,
with error bars indicating the sample standard deviation of the reported statistics. Meta
Hyperparameter optimization was unnecessary, as the models used were parameterized
solely based on empirical fitting. For HMM-based BK'T models, the EM algorithm was
used and restarted 10 times per iteration to ensure convergence to a global optimum.

The simplest useful models, Naive Bernoulli and Logistic Regression, performed consis-
tently well on the synthetic datasets (0.15 and 0.1 MSE on synthetic BKT and synthetic
IRT, respectively) and on the KDD dataset (0.15 MSE). However, their performance was
significantly worse on the Assistments dataset (0.25 MSE). Notably, Logistic Regression
outperformed Naive Bernoulli on synthetic data but not on real-world data, suggesting
that the assumption of time-dependency—where students become more likely to answer
related questions correctly over time—did not hold.
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BKT models performed best on all datasets (0.06,0.1,0.13, and 0.2 MSE on IRT, BKT,
KDD, and Assistments, respectively), validating their use despite their relative com-
plexity. Interestingly, the Clustered BKT model performed almost identically to the
unclustered model, indicating that clustering by student response patterns did not pro-
vide additional useful information. As expected, the Always-1 and Average Response
models performed worse than the other models.

Other quality metrics (AUROC and average error) confirmed the overall superiority of
BKT models, though the advantage for KDD and synthetic IRT data was relatively small
(< 0.05 better than the next best models). Across all datasets, BKT models exhibited
higher ROC curves than the other models.

There was no evidence of significant overfitting, as the standard deviations across Monte
Carlo cross-validation trials were small relative to the means. This consistency suggests
that the models generalized well to unseen data and did not overfit to the training set.
However, the large performance differences between the two real-world datasets (Assist-
ments and KDD) indicate that model performance on other real-world datasets could
vary significantly.
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Figure 2: Per-model metrics: AUROC, MSE, overall error rate.



7 Conclusion

Only BKT and Clustered BK'T consistently outperformed the baseline across all datasets.
The Average Response model performed nearly as well as BKT and Clustered BKT on
the Assistments and Synthetic datasets but performed significantly worse than BKT on
the KDD dataset. Although the results indicate that BKT is the most reliable model for
predicting student knowledge across multiple datasets, its improvement over the baseline
was marginal in some cases.

Clustered BKT and BKT achieved nearly identical performance across all datasets. This
outcome was unexpected, suggesting that in the future, a different set of features should
be selected to improve the effectiveness of clustering.
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