Analysis of Anomalous
Transactions Using Automated
Predictive Techniques

Mouhssine Rifaki’

LpARIS DAUPHINE UNIVERSITY - PSL
mouhssine.rifaki@psl.eu

Abstract

Research over the years, including the work by (Kou
et al. 2004), has shown that automated methods for
fraud detection hold a lot of potential. Inspired by this,
I worked on creating a machine learning model to iden-
tify fraudulent transactions as they happen, with the
goal of allowing immediate responses. I tried to ana-
lyze a dataset that contained hundreds of thousands of
transaction records, and included diverse details such
as timestamps, monetary amounts, and geographic in-
formation. It was quite detailed, but also somewhat
overwhelming to work with at first. One of the more
difficult aspects I encountered was the imbalance in
the dataset, fraudulent transactions were only a tiny
fraction of the total.

To address the underrepresentation of fraudulent cases
in the dataset, I applied fraud oversampling techniques
to give these cases greater prominence during train-
ing. Alongside this, I incorporated a focal loss function,
which helped the model concentrate more effectively
on the challenging, less frequent examples by penaliz-
ing uncertain predictions more strongly. This combi-
nation proved to be useful in improving the model’s
ability to detect fraud. But managing the class imbal-
ance required significant effort, as it added complexity
to the training process. The good news is that the
model achieved a test accuracy of 83% overall and an
accuracy of 88% specifically for detecting fraudulent
transactions. While these results were promising, I feel
there is still room for improvement, and further fine-
tuning could enhance the model’s performance even
more in future iterations.

1 Introduction

Under PwC’s Global Economic Crime Survey, 36% of
organizations reported experiencing economic crime
in 2016 (White, Anderson, and Lavion 2016). As fraud
tactics continue to become more sophisticated and
evolve, many instances of economic crime likely go
unnoticed, indicating that the actual financial impact
could be much greater than reported. Compounding
this issue, the average profit generated from these
crimes has been steadily rising (White, Anderson, and
Lavion 2016).

Significant events such as the Equifax data breach
and cases of international corporate espionage reveal
how inconsistent and insufficient many organizations’
fraud prevention strategies are. Alarmingly, most
companies still uncover fraud by chance rather than
through structured detection methods. Some research
has shown that automated fraud detection techniques
have considerable potential to address these gaps (Kou
et al. 2004).

I tried to implement some machine learning methods
to design and train a model capable of detecting
fraudulent transactions in real time, allowing for
immediate responses. For this purpose, I worked
with a dataset which included several hundred
thousand transactions with temporal, financial, and
geographical attributes. The model was trained using
a single-layer neural network, and to address the issue
of imbalanced data where fraudulent transactions
were far less common, I incorporated a focal loss
function. This method ensured that the model is more
focused on the underrepresented fraudulent cases.

2 Dataset and Features

The dataset I worked with includes 15 features drawn
from 290,382 examples of financial transactions. A
detailed explanation of these features can be found in
Table 2.1. Since the dataset contains both discrete and
continuous parameters, I used an encoder from the
SciKit Python library to convert the discrete features
into continuous ones. This step was important to en-
sure that all features in the dataset were in a consistent

format for analysis (Pedregosa et al. 2011).

Table 2.1: Features included in the dataset

Feature Description

bookingdate Timestamp when the chargeback
was reported

issuercountrycode Country where the card was is-
sued

txvariantcode Card type used (e.g., subbrand of
VISA or MasterCard)

bin Card issuer identifier

amount Transaction amount

currencycode Currency code

shoppercountrycode Country of shopper’s IP address

shopperinteraction

Indicates whether the transaction
was online or a subscription

cardverificationresponsesupplied

Indicates if the shopper provided
a CVC/CVV code

cveresponsecode Validation result of the provided
CVC/CVV code

creationdate Date of the transaction

accountcode Merchant’s webshop identifier

mail_id Shopper’s email address

ip_id Shopper’s IP address

card_id Shopper’s card number

The temporal variables like transaction timestamps,
are broken down into six separate components: year,
month, date, hour, minute, and second. I really wanted
to ensure consistency across all features, so I made
sure that each variable is independently scaled using a
Python library. This actually prevents features with
larger scales or arbitrary magnitudes, like encoded
variables, from disproportionately influencing the
objective function.

The feature ‘bookingdate’, which indicates the time
when a fraudulent transaction is reimbursed, is treated
as a proxy for the dependent variable. And since
this information is only available after the fact, it
is removed from the dataset to allow the model to
function in real-time fraud detection scenarios.

The dataset contains three class labels: ‘Chargeback
(fraud), ‘Settled‘ (non-fraud), and ‘Refused‘ (which
could indicate either fraud or insufficient funds). In
my analysis, I concentrated on the ‘Chargeback‘ and
‘Settled® classes, leaving out the Refused transactions
to make the process more manageable. To identify
which features were most relevant for detecting
fraud, I used histogram analyses and experimented
with forward feature selection methods. For this,
I relied on simple classifiers like Naive Bayes and

Logistic Regression to test the effectiveness of different
features. Four features stood out as important: ‘bin’,
‘amount’, cvcresponsecode, and ‘mail id‘.

The difficult aspects of working with the dataset is its
imbalance. Of the 290,382 transactions included in
the data, 53,346 were labeled as Refused and were re-
moved from this part of the analysis. This left 236,691
transactions marked as Settled and just 345 confirmed
as fraudulent. With a fraud rate of only 0.15%, the
data was heavily skewed, which added complexity to
the modeling process and highlighted the importance
of addressing this imbalance.

3 Method

At the start of my analysis, I tested several simple
classifiers using the SciKit-learn Python library to
figure out which type of model might be most effective
for this task (Pedregosa et al. 2011). When I ran
the Naive Bayes classifier, it became clear that its
assumption of conditional independence among
features did not align well with my dataset. Similarly,
Support Vector Machines with a linear kernel struggled
to deal with the dataset’s imbalance because they
lacked a way to apply weighted predictions. An
unweighted Logistic Classifier also had trouble with
this challenge, but by reweighting fraud cases more
heavily and reducing the impact of non-fraud cases, I
was able to get some moderately encouraging results.

Following my initial experiments, I decided to continue
with a single-layer Neural Network. For the hidden
layer, T used ReLU as the activation function, while the
output layer applied a sigmoid function. Among the
approaches I had tested up to that point, this setup
appeared to hold the most promise for addressing the
problem. It was clear to me that the Neural Network
implementation in sklearn had limitations regarding
the customization of the architecture and loss function.
Consequently, I have switched to TensorFlow, which
provided more flexibility I needed to create a more
tailored solution (Abadi et al. 2015). I built on what I
had learned from the weighted Logistic Classifier so I
established a baseline model. For this, I implemented
a single-layer Neural Network that utilized a weighted
cross-entropy loss function, which was designed to
handle the dataset’s class imbalance.

WCE(y,9) = —wsylog (§) — wnyr(1 —y)log (1 — 9),

& =3 WCE@G,y"),

i=1

Page 2 of 5

where g € [0, 1] represents the model’s prediction, and
y € {0,1} is the label. The weights w; and w, for
fraud and non-fraud cases, respectively, are defined as:

- — H{y € Y : y = non-fraud}|

, 3.3
f b &2
:|{y€Y:y:fraud}|' 3.4)

e Y]

The ReLU and sigmoid activation functions are defined
as:

(ReLU), (3.5)

(3.6)

(sigmoid).

I used mini-batch gradient descent to train the model.
To initialize the weights, I randomly drew values from
a standard normal distribution and set all the biases to
zero. Before running the training process, I shuffled
the dataset and broke it into smaller groups, or batches,
each containing B examples. These batches were then
passed through the network to generate predictions.
After processing each batch, I updated the parameters
0, which include the weights and biases, by applying
the gradient descent rule:

B
1 . .
= = E %% (@) (@)
gMB = B i CE(?/ Y)a (37)
0:=60—aVyLum. (3.8)

Challenges with Class Imbalance

The baseline model didn’t perform as well as expected,
mainly because of the heavily skewed dataset. With
only 0.15% of transactions being fraudulent, many of
the mini-batches ended up containing few or even no
examples of fraud at all. This created a noticeable bias
toward predicting non-fraudulent transactions, and the
weighted loss function wasn’t enough to fully compen-
sate for it. To tackle this issue, I experimented with
alternative sampling strategies to improve the model’s
balance.

Batch Sampling Strategies

* Weighted Sampling: Batch Sampling Strategies
The imbalance in my dataset required a different
approach, so I tried weighted sampling first.
For this, I assigned weights to each transaction
depending on whether it was labeled as fraud or
not. I then normalized these weights so that both
fraud and non-fraud examples would have about
the same representation in each batch. By doing

this, I could rely on a standard cross-entropy loss
function without needing additional class weight
adjustments. Effectively, I set the weights for both
fraud and non-fraud classes to 1 (wy = w, ¢ = 1).

* Proportional Sampling:

I also tested proportional sampling as another op-
tion. In this case, I sorted the data by labels and
built batches with a fixed fraction f of fraud cases.
Adjusting f gave me more control over how much
attention the model paid to fraud examples in
each batch, which seemed helpful for fine-tuning
the model’s performance during training.

Regularization and Overfitting

I want to point out that I encountered an issue with
overfitting while trying to balance the dataset. The
model seemed to perform noticeably better on the train-
ing data compared to the validation set. This made it
clear that the model was picking up patterns unique
to the training data rather than learning to generalize
effectively. This was especially problematic because I
had artificially increased the number of fraud exam-
ples. To address this, I added a regularization term to
help the model avoid depending too much on specific
patterns in the data. While this reduced the overfitting
to some extent, it wasn’t a perfect solution, and there’s
likely room for further improvement:

Lreg = L + A (|[W1]]3 + [[W2]]3) 3.9
where W, and W, are the weights of the hidden and
output layers, respectively, and X is the regularization
parameter. Gradient descent updates for W; and W5
were modified as:

WLQ = (1 — QQA)WLQ — OéVWLQo?}eg, (310)

with bias updates remaining unchanged.

Focal Loss for Ambiguous Cases

Many non-fraud examples were easily classified, ren-
dering them less useful for training. Inspired by (Lin
et al. 2017), we incorporated focal loss, which empha-
sizes ambiguous examples:

FL(y,9) = —(1=9)" fylog (§)—9" (1—f)(1—y)log (1 — 9),

(3.11)
where v > 0 controls the focus on uncertain predic-
tions. As ¢ approaches 0 or 1, the loss decreases, while
it peaks near § = 0.5, where model confidence is low-
est.

Page 3 of 5

Takeaway

Trying to manage the imbalance in the dataset turned
out to be one of the toughest challenges I faced.
Although strategies like focal loss and balanced
sampling showed improvements, applying them wasn’t
as simple as it seemed. I had to experiment a lot and
carefully adjust the parameters to prevent overfitting
while still ensuring that the model could handle well
new and unseen data.

4 Results and Discussion

4.1 Model Evaluation and Optimization

I focused on three key metrics to evaluate how well
the model performed: overall accuracy, fraud accuracy,
and non-fraud accuracy. I think these were particularly
important because mistakes in fraud detection, like
false positives or false negatives, could lead to serious
financial losses. I split the dataset into three parts:
70% for training, 15% for development, and 15% for
testing. I used cross-validation to calculate the metrics,
and Table 4.1 presents a summary of the results for
each tested model.

Table 4.1: Training and dev performance per model.

Train accuracy Dev accuracy

Model Overall Fraud Non Overall Fraud Non
Fraud Fraud

Naive Bayes 90 62 90 69 90 69
Weighted Logistic 82 89 82 82 80 82
Classifier
SVM 100 0 100 100 0 100
NN with unweighted 60 100 60 63 92 63
cross-entropy
Baseline NN 82 90 82 83 71 83
(weighted Cross-
entropy)
Baseline with f- 83 89 83 81 70 81
sampling
Baseline with regular- 71 95 71 70 96 70
ization
Baseline with feature 82 94 82 80 78 80
selection
Baseline with focal 83 88 83 86 83 86
loss, f-sampling, regu-
larization and feature
selection

During testing, I noticed that the Naive Bayes classifier
was inconsistent. Its performance on the training set
was significantly different from its performance on
the development set, which made it clear that the
assumption of conditional independence among fea-
tures didn’t work well for this dataset. The Weighted
Logistic Classifier was more consistent overall, but I
still saw some overfitting, as shown by differences in
fraud accuracy between the training and development
sets.

Other models, like SVM and unweighted Logistic
Classifiers, performed poorly. They often classified

almost all transactions as non-fraud, which highlighted
just how important it was to address the dataset’s
imbalance. The baseline Neural Network, which used
cross-entropy loss, had similar issues. It focused mostly
on non-fraud cases because fraud examples were
so rare in the dataset. However, f-sampling proved
helpful in reducing these imbalances and improving
the model’s accuracy across the board.

Regularization was also an important factor in reduc-
ing overfitting. It helped bring the fraud accuracy for
the training and development sets closer together. Fea-
ture selection further enhanced the model’s perfor-
mance. By combining it with focal loss, I was able to
achieve better results, including higher accuracy across
all datasets. In my case, the focal loss function worked
by penalizing false positives and false negatives more
heavily, while also limiting the influence of overly con-
fident predictions on the loss calculation.

Table 4.2: Final values for model parameters.

Parameter Value
Batch size 1000
Tolerance 0.01
Learning rate 5.0

A 0.001
~ 2.0

f 0.45
Number of hidden units 500

% Dev accuracy vs. y

Fraud accuracy
—— Non-Fraud accuracy

85

Accuracy (%)
o=}
o

~
o

70

65

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Y

Figure 1: Optimization plot for ~.

Page 4 of 5

Dev accuracy vs. f

100

80

60

Accuracy (%)

40

201

Fraud accuracy
—— Non-Fraud accuracy

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f

Figure 2: Optimization plot for f.

5 Conclusion

The process of tuning the model parameters, detailed
in Table 4.1, involved varying one parameter at a time
while keeping other parameters fixed. To make sure
we have reliable results, I averaged performance across
several runs for each parameter configuration.

Despite this approach being relatively simple, I think
it provided useful insights into the influence of indi-
vidual parameters. For instance, Figures 1 and 2 illus-
trate how « and f affected the model’s performance.
f proved to be particularly an important parameter
for balancing fraud and non-fraud predictions, which
had a non-negligible impact on the model’s overall
effectiveness.

References

Abadi, Martin et al. (2015). Tensorflow: Large-Scale
Learning on Heterogeneous Systems. URL: https://
www . tensorflow.org/.

Kou, Y. et al. (2004). “Survey of Fraud Detection Tech-
niques”. In: International Conference on Networking,
Sensing, and Control. Taipei: IEEE, pp. 749-754.

Lin, T.-Y. et al. (2017). “Focal Loss for Dense Object
Detection”. In: ICCV. Vol. 3.

Pedregosa, F. et al. (2011). “SciKit-learn: Machine
Learning in Python”. In: Journal of Machine Learning
Research 12, pp. 2825-2830.

White, T., M. Anderson, and D. Lavion (2016). Global
Economic Crime Survey 2016. Tech. rep. Price Water-
house Coopers.

Page 5 of 5

