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Abstract—I developed a bag-of-words approach for recognizing
business data. To identify each field of interest, I constructed
sets of potential features that capture both layout and textual
attributes. These features were weighted to emphasize the key
factors that differentiate each field. The process involved feature
selection, fine-tuning thresholds, and comparing different models.
As aresult, I achieved a training error rate of 8.81% and a testing
error rate of 13.99%.

I. INTRODUCTION

Invoice processing is one of the most critical tasks for the
financial department of any organization. In many of such
departments, invoices are still examined and entered manually,
a process that is slow, costly, prone to human errors, and has
become a bottleneck of high-speed data processes especially
when the number of invoices grows dramatically with the
development of the social economy [1]]. While a standard list
of critical fields is usually visible in almost all invoices, the
choice of keywords and layout can vary largely from vendor
to another, creating the challenge of extracting structured
information from unstructured documents in an attempt to
automate such invoice recognition and entry process.

The invoice recognition model proposed in this project aims to
provide deeper insights into addressing this challenge. Eight
fields of interest, including a negative class, are identified and
processed according to the workflow illustrated in Fig. [T}

The raw data for this model consists of scanned invoice
images. Following image processing, OCR, and pattern-
matching steps, word groups (tokens) and their coordinates
are extracted from the original images. These extracted
elements serve as the model’s actual inputs. From these
inputs, feature sets are created based on predefined selection
rules to capture a range of layout characteristics and word
patterns specific to each field. The features are then evaluated
and weighted using three classification models (Naive Bayes,
Logistic Regression, and Support Vector Machines) to predict
the corresponding field for each word group.

II. RELATED WORK

Various approaches in image processing and machine learning
have been explored to address the challenges of invoice
recognition from multiple perspectives.

Image processing methods often focus on detecting columns
and recognizing word sequences within logically segmented
regions [2], sometimes incorporating machine learning
techniques to enhance the accuracy of region classification.
While these techniques [3] can significantly support
other models, relying solely on an image processing-based
recognition algorithm oversimplifies the complexity of invoice
layouts. Such methods often assume consistent properties in
region segmentation using linear rule combinations, which
rarely hold true in practice due to the highly variable and
unpredictable nature of invoice designs.
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Fig. 1: Flow of Invoice Recognition

To address the need for more sophisticated models, template-
based classification algorithms have been introduced. These
methods rely on the template of an invoice, represented
by a set of layout attributes, which is either matched to a
predefined template library [[I]] [4] or grouped into a cluster of
templates with similar characteristics [5]]. In both approaches,
the template library or clusters are dynamically expanded
whenever a clear match cannot be found.



Template-based models offer the clear advantage of
recognizing an entire invoice in one step using pre-
established, template-specific rules. They tend to perform
exceptionally well with high-quality images and highly
distinctive templates. However, these ideal conditions are
rarely guaranteed in practice. Invoices are often poorly
scanned, and the vast number of vendors—and thus invoice
templates—frequently results in documents with similar
structures but slight (and often critical) variations in layout
and field arrangement. For template libraries, this can lead
to misrecognition of key fields due to the application of
incorrect rules. For clusters, challenges arise in defining
template “distance” and identifying subtle but significant
differences within a cluster, making the process complex and
error-prone. Additionally, these models are memory-intensive,
as the library or cluster size continues to grow over time.

Rule-based models are another available approach, relying
on sets of hand-crafted rules that are weighted to capture
fine-grained details for each field [6]. These models avoid
the rigidity of treating the entire invoice as a single unit.
While hand-crafted rules can be effective for invoices with
industry-standard components and layouts, they often rely
on assumptions about field properties that may be arbitrarily
incorrect (e.g., amounts are not always right-aligned) or
impractical (e.g., matching price and quantity with the total
amount to identify invoice lines, even though many real-
world invoices lack one or more of these fields). The model
developed in this project also recognizes fields individually,
but instead of only assigning weights to predefined rules, it
utilizes a bag of potential features to determine the optimal
set of rules for each field.

III. DATASET AND FEATURES

A. Dataset Generation
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Fig. 2: (Left): Invoice with Hidden Text, and (Right): Invoice
without Hidden Text

A total of 97 raw invoice images were sourced from Oracle
Corporation’s internal testing library, with sample images
shown in Fig. 3. To protect sensitive information, tokens
such as LOGO and ADDR were manually inserted in place
of actual text, with their positions preserved by labeling the
corners of bounding boxes. While some of the invoices are
well-structured PDF files containing hidden text, the majority
are TIFF images that require preprocessing before applying
PDF Layout Analysis [6] to extract word groups. The
workflow for generating word groups and their corresponding
coordinates, which serve as the training input, is illustrated in

Fig. B

The TIFF images are first aligned by calculating the optimal
rotation angle using the Hough Line Transform [7]. Optical
Character Recognition (OCR) [8] is then applied to extract any
textual groups present in the images. All sample invoices are
subsequently processed using PDF Layout Analysis to retrieve
and store the coordinates of the tokenized textual groups.
Additional word processing is performed on each token,
including Porter2 word stemming [9]], removal of stopwords
[10], and type identification using regular expressions. Five
specific types—DATE, MONEY, NUMBER, TELE, and
EMAIL—are defined for this final step, replacing exact
textual values with more generalized representations.

B. Feature Generation

For each token, the following set of feature selection rules
is applied: horizontal alignment with other tokens, vertical
alignment with other tokens, proximity to nearby tokens
within a defined distance threshold, overall vertical position,
and the token’s type. The features generated for each token
are then aggregated to create a bag of potential features,
where binary values indicate the presence or absence of a
particular feature for a given token. For example, if token A
is horizontally aligned with token B, the feature B_halign will
be assigned a value of 1 for token A and O otherwise. These
feature selection rules are designed to capture fundamental
layout information without making assumptions about any
standardized template.

Approximately 8000 features were generated for the 2095
tokens (m = 2095) extracted from 97 invoices. These features
were then reduced through an initial pruning process (Section
III-A) to remove those that appeared only once, as they are
not considered indicative. The remaining features (n ~ 2000)
were subsequently subjected to a detailed feature selection
process, as outlined in Section V.

IV. METHODS

Using the scikit-learn library [11]], three machine learning
models were trained and employed for predictions:
Multinomial Naive Bayes, Logistic Regression, and Support
Vector Machines. In all three models, the class labels were



defined as y € [0,7], where O represents the negative class,
and 1 through 7 correspond to the following fields: invoice
number, invoice date, total amount, PO #, payment terms,
due date, and tax, respectively.

A. Multinomial Naive Bayes

In the Multinomial Naive Bayes model, it is assumed that the
features x; are conditionally independent given the class labels
y. This model was used with Laplace smoothing to estimate
the parameters ¢y—r = p(y = k) and ¢; y—r = p(z; = ljy =
k), where k € [0, 7], to maximize the joint likelihood of the
data, expressed as:
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After fitting these parameters, predictions for a new example
with features = are made by calculating the posterior proba-
bility for each class k as follows:
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where the probabilities are replaced with their corresponding

parameter estimates. The class with the highest posterior
probability is selected as the prediction.
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B. Logistic Regression

In the Logistic Regression model, the multiclass classification
problem is transformed into a binary classification problem
using the one-vs-rest approach. This means that when calcu-
lating the probability for a specific class k, all other classes
are treated as a single label. In binary Logistic Regression, the
following hypothesis is used to make predictions:
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This hypothesis represents a logistic (sigmoid) curve that
smoothly transitions from O to 1. Predictions are made by
assigning a label of 1 if hy(z) > 0.5, and 0 otherwise. The
logistic loss function is then defined as:

L(z,y) = log(1 + exp(—yz)) = log(1 + exp(—yf” z)),

where z = 07 2. The loss is minimized when the margin yz is
large and maximized when the margin is small. To address

overfitting, l-regularization is applied. A slightly modified
version of the empirical regularized risk function is minimized:
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The parameters ¢ are fitted using the scikit-learn implemen-
tation, which solves the dual optimization problem of Is-
Regularized Logistic Regression through coordinate descent

2.
C. Support Vector Machines

Similar to Logistic Regression, the one-vs-rest approach is
applied to transform the problem into a binary classification
task with labels {—1, 1} for all classes. The margin-based loss
function used is defined as:

L(z,y) = [1 —y2]" = max{0,1 — yz},

where z = 6T z. This loss function becomes zero as long as
the margin yz is greater than 1, indicating that the model has
made a correct prediction with sufficient confidence.

To fit the model, the empirical I5 regularized risk is minimized,
expressed as:
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The scikit-learn implementation of LinearSVC uses a linear
kernel K. According to the representer theorem, z = 672 can
be implicitly expressed as 7", c;aD" 2. This enables the
use of the kernel trick, rewriting the empirical regularized risk
in terms of a:
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where K (i) represents the ith column of the Gram matrix
of kernel K. The LinearSVC implementation determines the
parameter « by solving the dual optimization problem in the
C-Support Vector Classification formulation of SVM [13].

After fitting the parameters, the model makes predictions based
on the value of z = 67 .

V. RESULTS AND DISCUSSION
A. Metrics

Given that, in any invoice, there are significantly fewer fields
belonging to classes 1-7 compared to those classified as
”Other,” the data is heavily skewed toward class 0. As a
result, the overall model accuracy (percentage error) is not
the most informative metric, since strong performance on



the dominant class can yield high accuracy regardless of the
model’s performance on the minority classes. To provide a
more balanced evaluation, I computed the precision, recall,
specificity, and the corresponding F1 scores for all classes.
The F1 score, defined as the harmonic mean of precision and
recall [14], combines these two metrics, which often trade off
against each other, into a single measure:

recision = TP recall = TP
P “ TP+ FP’ T TP+ FN’
e TN 2 - precision - recall
specificity = ————, = — .
TN+ FP precision + recall

In some cases, however, it is useful to have a single metric
that reflects performance specifically on the minority classes
(all classes except “Other”) in the trade-off space. For this
purpose, I calculated the average F1 score for all classes,
weighted by the frequency of each class label. To ensure that
the contribution of the majority class does not dominate this
metric, the “Other” class was excluded when computing the
weighted average F1 score.

B. Regularization Parameter Scaling

A regularization term is added to both Logistic Regression
and SVM, as shown in Eq.(1-5), to reduce overfitting. The
parameter C' serves as the regularization control, balancing
the cost of misclassification on the training data [I5]. Fig. 4
illustrates the relationship between C' and the F1 score for
both /;- and l-regularization.

From the figure, it is evident that performance deteriorates
when C' is either too small or too large. A small C' reduces
the penalty for misclassification on the training data, leading
to an overly “soft” hyperplane margin that risks underfitting.
Conversely, a large C' imposes a high penalty for non-
separable points, forcing the algorithm to fit the data more
strictly, which increases the risk of overfitting.

Although [;-regularization is computationally more efficient
for sparse data, Fig. 4 shows that lo-regularization generally
provides better optimization for the average F1 score, which
is the primary metric of interest. Therefore, lo-regularization
is applied in both Logistic Regression and SVM for this
model. The optimal regularization parameters are C' = 10.72
for Logistic Regression and C' = 0.58 for SVM.

Table I presents the final training and testing errors for each
classifier after parameter optimization. The results confirm
the effectiveness of my regularization approach, particularly
for SVM which achieves the lowest error rates despite using
fewer features than Logistic Regression. Notably, while
Naive Bayes exhibits minimal overfitting with only a 0.26%
difference between training and testing errors, its overall
performance lags behind the other methods. This suggests

that the added complexity and careful regularization of
SVM and Logistic Regression are justified by their superior
classification accuracy, even though they require more
computational resources during training.
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C. Feature Selection

Fig. [] evaluates the effectiveness of each feature selection
rule. Solid markers represent the weighted average F1 score
when only that rule is included (inclusion set), while hollow
markers represent the case when only that rule is excluded
(exclusion set).

It is evident that horizontal alignment (hAlign) is the most
effective rule, showing the best performance in the inclusion
set and the worst in the exclusion set. This is followed by
self type (selfType), nearby, vertical alignment (vAlign),



and position (pos). The superior performance of hAlign
is expected, as many fields of interest, regardless of their
absolute position, are horizontally aligned in a significant
number of invoices. Conversely, while the absolute vertical
position was moderately indicative with smaller datasets,
the variety in invoice templates increases substantially
with larger datasets, making it harder to derive common
structural properties and reducing the effectiveness of this rule.

After the rule-level analysis, filter-based feature selection is
applied to individual features to exclude less indicative ones
generated by effective selection rules. For each feature, the
empirical distributions p(«;), p(y), and their joint distribu-
tion p(z;,y) are used to compute the mutual information
MI(z;,y) between z; and y. This is calculated using the
Kullback-Leibler (KL) divergence between the distributions
p(zi,y) and p(z:)p(y):

MI(zi,y) = KL(p(zi,y) || p(@:)p(y))

_ oo p(xi,y)
= Z Zp(wz,y)logm~
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The value of M1(z;,y) serves as a score, with larger values
indicating that a feature z; is strongly correlated with the class
labels. Based on these scores, the top features are selected for
the model. To determine the number of features to include, a
sweep is conducted over the number of top-scored features,
and the weighted average F1 score is computed using k-fold
validation to threshold the desired performance.

Fig. [] presents the experimental results for both training
and testing F1 scores computed with k-fold cross-validation
for three algorithms. For the training F1 score, both SVM
and Logistic Regression show a monotonic increase as more
features are included, reflecting overfitting. Naive Bayes, on
the other hand, initially shows a sharp improvement as the
number of features increases when the feature size is small
but begins to degrade when too many features are included.

This is because Naive Bayes assigns equal weights to the
probabilities of all features and multiplies them, causing the
influence of indicative features to diminish as more features
are added, ultimately reducing performance. A similar but
more pronounced behavior is observed for the testing F1
score of Naive Bayes. Furthermore, Naive Bayes assumes
that features are independent, which is often inaccurate. For
example, if the token “invoice number” is nearby, it is highly
likely that “invoice date” and other header tokens are also in
the nearby region.

For SVM and Logistic Regression, performance initially im-
proves before plateauing. The turning point of the F1 score,
observed at 434 features, is chosen as the threshold for the
number of features to include, as adding more features beyond
this point does not improve performance.

TABLE I: Average Training and Testing Accuracy

Model Training Testing Error
Error (%) (%)
Naive Bayes (9 features) 16.17 16.43
Logistic Regression (249 features) 10.95 14.53
SVM (157 features) 8.81 13.99

D. Overall Performance Evaluation

Table 1 summarizes the best k-fold cross-validation accuracy
achieved and training accuracy for the three algorithms, along
with the corresponding number of top-scored features. Slight
overfitting is observed in Logistic Regression and SVM due
to regularization, but overall accuracy is promising. Fig. [6]
illustrates the precision, recall, and specificity for all classes
and three algorithms on both training and test data, computed
using k-fold cross-validation. A trade-off between precision
and recall is evident for most classes.

Fig. [bfa) indicates that the models perform well across all
classes on the training data. However, a comparison between
Fig. [6(a) and Fig. [6[b) reveals high variance for the “Invoice
Number” and PO #” fields, suggesting overfitting. These
fields are particularly prone to overfitting due to their highly
variable feature sets and the small quantity of PO # tokens in
the dataset.

From Fig. [§ka) and (b), it can be observed that Naive Bayes
performs worse than Logistic Regression and SVM in terms
of both precision and recall for almost all classes. This is
likely because Naive Bayes assumes that all features are con-
ditionally independent given the class labels, an assumption
that often does not hold in this classification context. Logistic
Regression and SVM exhibit similar precision across most
fields of interest, except for PO #, Due Date, and Tax, where
SVM generally performs slightly better. SVM outperforms
Logistic Regression for PO #, whereas Logistic Regression
achieves better performance for Due Date and Tax.

E. Overall Performance Evaluation

Table 1 presents the best k-fold cross-validation accuracy
achieved and training accuracy for the three algorithms, along
with the corresponding number of top-scored features. Slight
overfitting is observed in Logistic Regression and SVM due
to the use of regularization, but the overall accuracy remains
promising. Fig. [] shows the precision, recall, and specificity
for all classes and the three algorithms on training and test
data, computed using k-fold cross-validation. A trade-off
between precision and recall is evident in most classes.
Fig. [6(a) demonstrates that the models perform well across all
classes on the training data. However, a comparison between
Fig. [f(a) and Fig. [§b) reveals high variance for the “Invoice
Number” and PO #” fields, suggesting overfitting. These
fields are particularly prone to overfitting due to their highly
variable feature sets and the limited number of PO # tokens
in the dataset.
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From Fig. [6fa) and Fig. [f[b), it is evident that Naive Bayes
generally performs worse than Logistic Regression and
SVM in terms of both precision and recall across almost all
classes. This underperformance is likely because Naive Bayes
assumes that all features are conditionally independent given
the class labels, which is an assumption that does not hold
in this classification context. Logistic Regression and SVM
exhibit similar precision across most fields of interest, except
for PO #, Due Date, and Tax, where SVM performs slightly
better. Specifically, SVM outperforms Logistic Regression for
PO #, while Logistic Regression achieves better results for
Due Date and Tax.

The key distinction between these fields is that PO # fields
vary significantly in terms of type and position within
invoice files, whereas Due Date and Tax are generally
consistent in type (date and money, respectively) and
can be more easily identified using their self type. This
suggests that SVM is more effective than Logistic Regression
at extracting the most relevant features for making predictions.

Another notable observation is that, with the exception of the
Other field (class label 0), all fields of interest suffer from

low recall, regardless of the algorithm used, but exhibit very
high specificity. Conversely, the Other field shows very high
recall but low specificity. This indicates that the learning
algorithms frequently misclassify fields such as Invoice
Number or Invoice Date (class labels 1-7) as Other, while
rarely misclassifying the Other field as one of the specific
fields.

This behavior can be attributed to the fact that the Other field
encompasses a diverse range of unlabeled fields in the data,
leading to a highly skewed class distribution and a strong
tendency for the algorithm to predict a field as Other. This
argument is further supported by Fig. [B[c), which shows
the same plot without the Other field. Without the Other
class, the performance across all fields of interest improves
dramatically, especially in terms of precision and recall.

In summary, the algorithms can reliably distinguish between
the fields belonging to class labels 1-7 but struggle due to the
large volume of tokens labeled as Other. The wide range of
feature characteristics exhibited by the Other field leads to a
high rate of misclassification for fields 1-7 as 0. I believe that
this issue could be mitigated with the availability of more



training data and the inclusion of additional labeled fields of
interest in the training dataset.

VI. CONCLUSION AND FUTURE WORK

Overall, SVM produced the best results, as it does not rely on
unnecessary assumptions like Naive Bayes and can effectively
determine the optimal margin to separate two classes. Given
more time, further exploration could be conducted to address
overfitting, including expanding the size of the training
dataset and employing wrapper model feature selection for
more precise results.

Additional analysis could focus on evaluating the effectiveness
of the current set of feature selection rules in capturing the
inherent structure of invoice layouts. This could include
performing rule-level feature selection on a larger pool of
potential feature generation rules. Furthermore, the current
results are significantly influenced by poor OCR performance,
highlighting the need for investigating more optimized OCR
tools or obtaining higher-quality invoice images for analysis.
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