Foundational Development of Kernelized Support Vector Machines

Moubhssine Rifaki
mouhssine.rifaki @psl.eu

1 Introduction

In this project, I focused on training classifiers from scratch on high-
dimensional datasets (MNIST in my case) using kernel-based methods. My
work specifically focused on exploring and evaluating variants of Support
Vector Machines.

2 Outline

The project itself had three main phases, each with its own challenges.
Phase one focused on preprocessing the training samples. Tasks like noise
filtering, scaling, and tilt correction were all tackled here to try to improve
image quality (sometimes with mixed success). The second phase dove
into feature extraction, where we didn’t just stop at raw pixel intensity but
tried to engineer extra features and then there was the matter of picking the
right kernel, which wasn’t always straightforward. Finally, phase three was
about solving the optimization problem and pulling everything together so
the classifier was ready to make predictions.

3 Pre-processing

The training set 7 = {(z¥, y)}1<i<,, contained 5000 grayscale images,
each sized 28 x 28, evenly distributed across the 10 classes {0, 1,...,9}.
To refine the data, I experimented with skew correction by applying the
Hough transform to vertically align the dominant line. It was an interesting
approach, as the alignment often depended on the clarity of the dominant
line in each image.

Skewed Deskewed Trimmed Median

Ll CIGIG,

Figure 1. Effect of trimming the black border on the input images.

Blurred (0=2)

There is another pre-processing technique that I noticed helped improve
the classifier’s performance was trimming the image’s black border, as
illustrated in Fig. 1. Following this, I applied both a median filter, to denoise
the image, and a Gaussian blur, to reduce intra-class variance, in parallel.
The final pixel intensities were scaled to lie within the range [0, 1]. The
interesting thing is that despite this pre-processing, global normalization
of the features did not lead to any significant improvement in learning
performance.

4 Features extraction
4.1 HOG features

I wanted to include some information about the image gradients, so I ended
up trying Histograms of Oriented Gradients (HOG) features along with the

raw pixel data. From what I could gather, these features are essentially a
way to capture how edges are oriented, but in a somewhat nonlinear way.
So, first, I worked out the vertical and horizontal gradients for the image.
Then, I grouped those gradients into small, local patches to avoid getting
too caught up in where the edges were exactly. After that, for every b x b
block, I built an n-bin histogram that recorded the gradient orientations.
Once I had all those histograms, I put them together into one long feature
vector.

4.2 The kernels

For the raw and HOG features, I tested the following kernels:

Linear K(z,y) = 2Ty Raw, HOG
RBF K, (z,y) = exp (—zg';gd) Raw, HOG
Poly Kq(z,y) = (1 +2"y) Raw

X K(z,y) =% @2t | HOG

Intersection | K (z,y) = >, min(xz;,y;) HOG
Table 1. Tested Kernels for Raw and HOG Features

Implementing these kernels was fairly straightforward, but I noticed that
both the intersection and 2 kernels turned out to be pretty heavy in terms
of computation. This made them less efficient, even though they work quite
well with HOG features.

5 Support vector machines
5.1 Sequential Minimal Optimization

I aim to solve the QP dual problem of the regularized SVM:

1
maximize W(a) = 17a — iozTHoz

@ (QP1)
subjectto 0 < a <X C'1,
YT'a=0
where Y = [y, ..., y(™] and H = diag(Y")Kdiag(Y"). For a vector z, the

prediction is made as:
y(2) = sign f(z) = 3 aiy@ K (219, z) +b.
i=1

A point is considered optimal if and only if the KKT conditions are satisfied:

=0 = yDfzD)>1,
0<a;<C = yOfz®) =1,
y(i)f(l‘(i)) <1.

I implemented a simplified version of the SMO algorithm to solve (QP1):

(KKT)
a=0 =

1. Repeat until convergence:

(a) Select a violating term «; (i.e., one that does not satisfy (KKT)).

(b) Optimize W () with respect to «; and a randomly selected term
«;, while keeping all other components fixed.

The algorithm is said to have converged when « doesn’t change anymore,
even after running several iterations (the full algorithm is in the appendix,
if you’re curious). I did try using some more complicated heuristics to
choose the most violating pair (o, c;) or even larger sets to work with, but
honestly, this version of SMO seemed efficient enough for what I needed.

5.2 Multiple kernel learning (MKL)

Given a set of base kernels { K}, }1<x<,., the goal in linear Multiple Kernel
Learning (MKL) is to figure out both the SVM parameters and the best linear
combination of these base kernels at the same time:

The resulting QP problem is:

1.5 A
imi].T - = d1 ’THZ‘ = d 2
maximize 1%a — 3 1; o' Ho+ 5 Ild]|

subjectto 0 < a <X C1, (Qr2)

'y =0,
Here, for every kernel, H; = diag(Y)K,diag(Y’). From my experience,
SMO turned out to be a good fit for solving this problem.

6 Experiments and Results

‘When comparing the models, I decided to use k-fold cross-validation with
k = 5. This way, every observation could take a turn in both the training
and validation sets. The sections that follow go into more detail about the
accuracy estimates from k-fold and how things played out on the Kaggle
leaderboard.

6.1 One vs. One

I knew that the default SVM algorithm solves binary classification prob-
lems and since this task involves multi-class classification (10 classes),
I considered all possible classifiers between pairs of classes, resulting in

(120) = 45 classifiers.

6.2 One vs. Rest

In this case, for each class, I trained a classifier where all remaining classes
were treated as a single class. In this setup, the positive class is a minority.
To mitigate the imbalance, I introduced two separate regularization param-
eters per class (C = 3C, 8 > 1) to appropriately weight the classes.

6.3 Final Prediction

With either the one-vs.-one or one-vs.-rest strategy, multiple scores are
generated for each observation. To combine these scores and produce a
final prediction, I used the following methods:

e One vs. One: Each classifier casts a vote for its predicted class, and
the final prediction is the class with the most votes.

* One vs. Rest: To compare the 10 scores, I estimated the posterior class
probability for each class using Platt’s scaling technique:

Py = 1]x) = pap(s) = o(as +b),

where s is the SVM score, and a, b are optimized using logistic regres-

sion.

6.4 Results

Kernel Parameters Acc(l) | Acc(2)
Raw (linear) C=10,8=1|87.30%

Raw (poly, d = 3) C=10,8=1195.80%

Raw (poly, d = 5) C=10,=119510%

Raw (rbf, 0 = 4) C=10,=219570%

Raw (tbf, 0 = 7) C=10,5=2196.10% | 95.42%
Raw (rbf, o = 10) C=10,8=219590%

HOG (linear) C=10,=11|9230%

HOG (intersection) C=10,6= 93.70%

HOG (1bf, 0 = 2) C=10,5=1196.10%

HOG (1bf, 0 = 4) C=10,8=1|96.00%

K; = Raw (tbf, 0 = 7)

K> = HOG (1bf, 0 = 4) C=10,8=2196.90%

K=K 0K

K; = Raw (ibf, 0 =7)

K, = HOG (1bf, 0 = 4)

K3 = HOG (linear)

K=K 0K, +K;)+K,0K3 | C=10,8=3

With blurring and deskewing 97.10% | 97.26%
Without blurring nor deskewing 97.00% | 97.08%
Without trimming 94.90%

MKL { K\, Ky, K3} 97.20% | 96.90%

Table 2. Acc(1): k-fold accuracy - Acc(2): Kaggle accuracy

6.4.1 Best Performance Statistics

Ground Truth

Figure 2. Performance comparison on selected metrics.

Prediction
5 6

Figure 3. Some misclassified samples are unrecognizable even to a human
classifier. Although applying a median filter might remove outlier elements
like the character shown above, the overall performance drops.

7 Conclusion

On the MNIST problem, some classes, such as {0, 1,3}, are more distinc-
tive than others. Although the one-vs.-one strategy separates the classes
accurately, I noticed that its overall accuracy is generally lower than the
one-vs.-rest model with Platt’s scaling. Among the tested kernels, the linear
RBF, and exponential x* kernels yielded better results on the HOG feature
space, while the RBF kernel performed best on the raw pixel space.

My implementation of the MKL SMO algorithm was significantly slower
than the standard SVM SMO. Additionally, I found that the elementwise
product of kernels represents sample similarity better than the linear
combination, which was the only version I tested with MKL.

References

[1] L. Bottou and C.-J. Lin, “Support vector machine solvers,” in Large
Scale Kernel Machines, pp. 301-320, 2007.

[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1, pp. 886-893,
IEEE, 2005.

—
W
—

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
“Improvements to platt’s smo algorithm for svm classifier design,” Neu-
ral Computation, vol. 13, no. 3, pp. 637-649, 2001.

[4

finan

H.-T. Lin, C.-J. Lin, and R. C. Weng, “A note on platt’s probabilistic
outputs for support vector machines,” Machine Learning, vol. 68, no. 3,
pp. 267-276, 2007.

[5

—

J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods, pp. 185-208,
1999.

[6

[

Z. Sun, N. Ampornpunt, M. Varma, and S. Vishwanathan, “Multiple
kernel learning and the smo algorithm,” in Advances in Neural Informa-
tion Processing Systems, pp. 2361-2369, 2010.

Algorithm 1 SVM SMO

Algorithm 2 MKL SMO

1:
2:
3
4:
5
6:
7
8

9

11:

38:

41:

Inputs: Samples (2, y),<;,,, tolerance t 01, regularization C' € R™
Outputs: Lagrange multipliers «, bias b
Initialization:
a=0,b=0
f=0tostore f(z;) = X7, iy DK (29, 20) + b
epoch =0
while epoch < 10 do
diff < 0
fori=1,...,mdo
Compute E; = f(x;) + b —y@
ifyDE < —tol Aa, < CD]v [yDE; > tol A, > 0] then
Selectj € {1,...,m}\{i} and compute E; = f(z;)+b—y"?
if y = yU) then
L = max(0, o; + a; — CD)
H =min(CY, q; + ;)
else
L =max(0, 05 —)
H =min(CY,CO + a; — o;)
end if
if |L — H| < tol then
continue to the next ¢
end if
n=2K(i,j) ~ K(i,i) ~ K(j.4)
if 7 > 0 then
continue to the next ¢
end if
Update o; = o — y(f)E”—;Ei, crop to [L, H]
if |o; — o] < tol then
continue to the next ¢
end if
;= a; +y Dy (a; — o)
Compute new bias b
Update f, increment diff
end if
end for
if diff = O then
epoch++
else
epoch=0
end if
end while

> Number of updated coefficients o

1:

255
26:

b A

Inputs: Samples (79, y®),<;<,,, tolerance tol, regularization C' €
R™, base kernels { K}

: Outputs: Lagrange multipliers o, bias b, kernel coefficients d
. Initialization:

a=0,b=0,f=0,d=1/n

. while epoch < 10 do

diff < 0
forv=1,...,mdo
Compute F; = f(x;) + b — y@
if Conditions for update then
Selectj € {1,...,m}\ {i}
for1 </ <ndo
A = Ki(i,1) + Ki(4, §) — 2K, (i, §)
B =y (aY)T (Kili,") — Ki(j,:))
end for
Solve cubic equation to optimize A for a;, o;
Update kernel coefficients d: d = d + %AB
Update f and compute b
Increment diff
end if
end for
if diff = O then
epoch++
else
epoch =0
end if
end while

> Number of updated coefficients «;

