Valuation Growth Using Deep Learning Methods

Mouhssine Rifaki’

Abstract

Venture capital plays an instrumental role in the modern American economy. Corporations such as Google,
Apple, Facebook, Instagram, PayPal, Tesla, SpaceX, Airbnb, FedEx, and Intel all received venture funding to
grow into the iconic companies they are today. As of 2015, venture-backed companies made up 17% of U.S.
public companies, accounted for 44% of R&D spending, and employed 11% of U.S. citizens [1]. Despite the
unequivocal impact venture capital has on the United States, the process behind venture investment decisions
remains manual, subjective, and unsystematic.

This paper explores whether venture capital can benefit from machine learning, particularly deep learning, to
make investment decisions in a more systematic and scientific manner. Specifically, we aim to predict the
valuation step-up multiple in the subsequent financing round of venture-backed U.S. companies. The primary
dataset for our model comes from Pitchbook, a popular commercial dataset of company and funding information.
We produced a regression-based model using a fully-connected 10-layer neural network to encode features
and predict the valuation step-up multiple. Results show that for the regression task of predicting company
valuation step-up, deep learning techniques meaningfully outperform statistical inference models such as linear
regression. However, non-deep learning models, such as random forest, appear to be better suited for this

regression analysis.

Keywords

"Paris Dauphine University - PSL, email: mouhssine.rifaki@psl.eu

fully-connected neural network, venture capital, regression, company valuation prediction

1. Introduction

Venture capital is a type of financing where investors provide
capital to startups to finance growth in return for equity. After
interviewing over 20 investors from top venture funds such as
Bessemer Venture Partners, Andreessen Horowitz, Sequoia
Capital, Redpoint Ventures, and GV, we have defined the typi-
cal early-stage venture capital process as follows: investors
conduct research on the team, market, product, competitive
landscape, and financials. The investing team amalgamates
research and subjectively weighs data points to arrive at a bi-
nary decision of whether to invest or pass on the opportunity.

A successful investment is one where the company’s valuation
appreciates and the investor is able to liquidate their stake at
the heightened valuation, generating a profit. Given this, the
ideal task is predicting the valuation multiple at the time of
exit. However, potential exit and liquidation events are un-
predictable, vary significantly in time horizon, and are often
not documented. Therefore, we defined our goal as predicting
the valuation multiple in the subsequent round of funding.
While we recognize that gains cannot necessarily be realized
in successive rounds, the valuation step-up multiple is a key
indicator of future exit value.

We limited our dataset to venture-backed companies in the
U.S. that raised a seed round of financing and were founded
between the years 1990 and 2020. By leveraging Pitch-
book data, a popular commercial dataset of company and
funding information, we obtained over 160 features, ranging
from founder name (from which we could deduce gender)
to industry_code (from which we could extract market-
wide growth rates). After extensive cleaning, pre-processing,
and transformations, we refined our dataset to 30 core features.
These features were fed into a custom-trained, 10-layer dense,
fully-connected neural network that encodes the features and
predicts a numerical valuation step-up multiple.

2. Related Work

Some previous work has attempted to predict the success of
a startup based on information regarding the company and
its founders. One notable project, titled The Holy Grail
of Venture Capital [2], was conducted by a technical and
VC-experienced team from the University of California at
Berkeley. This team utilized traits of founders, such as fear
of failure, persistence, persuasiveness, reliability, competitive-
ness, network strength, and trust, to determine the likelihood
of success. These traits were scaled as quantitative measures

from 1 to 5. Using data from Crunchbase and a founder sur-
vey, the team processed eight features and one target output
after extensive pre-processing. For their model, they com-
pared algorithms including logistic regression, SVM, percep-
tron, Naive Bayes, XGBoost, and random forest. Despite the
comprehensive comparison, they did not explore using deep
learning techniques.

Another prior study was conducted by Will Gornell and Ilya
Strebulaev, who developed a valuation model for venture
capital-backed companies with multiple rounds of financing
[3]. Their model utilized data from Pitchbook and Genesis,
focusing on U.S. companies from 2004 onwards. The dataset
included approximately 19,000 companies and 37,000 financ-
ing rounds. The paper explored regression models to assess
how current value, value change, and prior contractual terms
influence the terms of a new financing round. Their results
highlighted an overestimation of post-valuation figures but
aligned with price reports from finance intermediaries in the
VC industry.

3. Dataset and Features

Our research utilized data from Pitchbook, one of the premier
commercial datasets of startups and venture capitalists. We
began our data collection by scraping every company and
fundraising round from the Pitchbook database. We restricted
our dataset to U.S. companies that had raised a seed round of
venture financing and were founded between 1990 and 2020.

While the raw dataset included over 10,000 rows, a large
percentage of entries were sparse and included duplicates.
To address this, we mapped every company and fundraising
round to a unique company identifier and deal identifier, re-
spectively. Duplicate entries were removed using the unique
deal identifier, and companies without consistent round-to-
round information were excluded. After data cleaning, our
final dataset contained 34,265 unique deals across 22,067
unique companies.

Given that we aim to predict the valuation step-up multiple in
subsequent rounds, we ensured our data was well-distributed
among various initial fundraising rounds. Figure 2 illustrates
the distribution of rounds across the five predominant fundrais-
ing stages.

An important factor to address in our dataset was survivor-
ship bias, given the high failure rate of startups, especially
early in their development. Our dataset inherently favored
successful companies, as it was limited to those tracked by
Pitchbook. According to the National Venture Capital Associ-
ation, roughly 25% of venture-backed businesses fail, whereas
only 7% of companies in our dataset had failed—a notable
disparity [1]. To mitigate this bias, we took a longitudinal
approach to data collection and factored company status into

2/7

12000

10000

8000

6000 [

4000

2000

0

A C B D Seed

Figure 1. Distribution by fundraising round (Seed, A, B, C,
D) in dataset.

our predictive model. Specifically, companies labeled as “Out
of Business” were assigned a valuation multiple of 0 in their
final round. While these measures helped reduce survivorship
bias, it remains a limitation of our model.

3.1 Data Processing and Transformations

The raw dataset included over 160 columns, such as founder
demographics, company information (e.g., year founded, lo-
cation, employee count), customer count, number of deals,
and features of the fundraising process (e.g., deal size and
liquidation preference). A complete list of raw columns is
available in the appendix.

We performed extensive pre-processing and transformations
to derive meaningful features. Table 1 outlines the primary
pre-processing and transformation techniques employed.

To standardize values over time, we integrated a GDP-deflator.
We also applied normalization to features spanning multiple
ranges to constrain values to a common scale. Normalization
shortened the time to model convergence, as gradients reached
local minima more efficiently.

3.2 Generating the Output Variable

The dataset did not natively include our desired output vari-
able: valuation step-up multiple. We calculated this label by
grouping all rows by company_id, iterating over each deal,
and applying the formula:

current round valuation
previous round valuation

valuation step-up multiple =

For example, if the post-money valuation of a Seed round was
$10M and the post-money valuation of the subsequent Series
A round was $20M, the valuation step-up multiple would be

Category
As-is

Pre-processing Techniques

"employee_count", "year_founded",
"deal_number", "percent_owned",
"percent_acquired", "pre_valuation",
"raised_ to_date", "deal_size",
"price_per_share_x", "post_valuation"

Hot encodings)
"business_status", "ownership_status",

"financing.status", "universe", "sic_codes",
"naics_codes", "state", "stock_typex",

"deal_status", "deal.-class", "deal_type.2"

Binary/Tertiary
" SHREN
Conversions website",

"country",

"paren_company", "tech_hotspot",
"name", "boardvoting.rights"

Count Conver-

sions "sister_companies_count”,
"subsidiary_companies_count",
"customers_count”, "market_count",
"competition", "products"
"elapsed_announced_deal™-Contains number of days
elapsed between the announced date and the date the deal got
done and it was calculated from fields "deal_date" and
"announced._date".

Other

"founder_gender"-Using gender_guesser.detector
to predict the gender of the founder.

Table 1. Summary of pre-processing and transformation
techniques.

2.0. The output is a numeric float. Figure 2 illustrates the dis-
tribution of valuation step-up multiples in our cleaned dataset.
As shown, the majority of companies achieve less than a 2.0x
multiple per round, with the 99th percentile at 10.25x.

2500

2000

1500

1000

500

0 0 2 4 6 8 10 12

Figure 2. Distribution by fundraising round (Seed, A, B, C,
D) in dataset.

3.3 Test, Development, and Training Sets
The dataset was divided into training, development, and test
sets. The final split was as follows:

1. Training set: 70% of the data.

2. Development set: 10% (2,348 samples).
3. Validation set: 10% (2,347 samples).

4. Test set: 10% (2,344 samples).

3/7

4. Methods

Data manipulation and models were built using Keras [4],
Tensorflow [5], Numpy [6], and Scikit-learn [7]. The architec-
ture was designed from scratch, though inspired by previous
research in this domain.

4.1 Deep Neural Network Architecture

Our final architecture was a deep fully-connected neural net-
work consisting of a total of 10 fully-connected layers (4
hidden, 1 input, and 1 output layer). Given that our data was
structured, quantitative data in tabular form, we hypothesized
that a fully-connected neural network would be more suitable
compared to other neural network architectures such as CNNs
or RNNE.

We initialized the weights using He Normalization and ap-
plied L1 Regularization to each layer except the output layer.
Between layers, the vectorized outputs were passed into a
Leaky ReLU activation function, except for the output layer,
where a linear activation function was used. A linear activa-
tion was chosen for the final layer as our output prediction is
a real number (float type), representing the valuation step-up
multiple of the company. After extensive testing and analysis
(detailed in Section 5), we finalized the architecture shown in
Figure 3.

i

Figure 3. Deep Neural Network Architecture.

Input Layer € R? Hidden R®? Hidden R* Hidden R7°
Hidden R>° Hidden R?® Hidden R3! Hidden R7®
Hidden R’ Hidden R7° Output R!

4.2 Hyperparameters and Loss Function
The relevant hyperparameters (outside the number of layers)
were tuned to achieve the following optimal values:

* Learning Rate: 0.005
* Gradient Clipping Parameter: 0.7

* Regularization: L1

* Dropout Rate: 0.25

Epochs: 100
* Batch Size: 64

For our loss function, we prioritized mean squared error
(MSE) as our primary loss metric since the model is solving a
regression problem rather than a classification one. MSE was
selected over mean absolute error (MAE) due to its harsher
penalties for larger errors, which are squared in MSE:

1

MSE = —
Ni

(yi — 91)?

M=

1

4.3 Baseline Models

We implemented a linear regression model as a baseline for
performance comparison. The linear regression model yielded
an MSE of 6.6 x 10! on the dev set, which was significantly
worse than our deep learning model.

Additionally, we implemented a random forest model as an al-

ternative baseline. We utilized the RandomForestRegressor

4/7

During initial iterations, we noticed high bias, indicated by a
substantial discrepancy between our training loss and that of
other models, such as random forest. To combat this underfit-
ting, we implemented gradient clipping to prevent exploding
gradients, significantly reducing training loss.

Several experiments were conducted to optimize the model.
The number of epochs was determined manually through trial
runs, with 100 epochs chosen as the point where the training
and dev losses plateaued. We also improved regularization by
switching from L2 to L1 regularization, which reduced the
MSE for both the training and dev sets. We hypothesize that
L1 improved performance by shrinking non-relevant weights
to 0, effectively acting as a form of feature selection.

Training MSE | Dev MSE
L1 1.77 1.55
L2 1.91 2.53

Table 2. Results from comparing L1 and L2 regularization.

To optimize other hyperparameters, we used a random search
process. Instead of employing the Keras Tuner library, we
built a custom optimizer from scratch. We ran fifteen experi-
ments with different seeds (0 to 14) to ensure diverse network
architectures and hyperparameters, allowing effective compar-
isons. Seeds were used to ensure replicable experiments.

Three activation functions were tested: ReLU, Leaky ReLLU,
and the Swish function. The Swish function, defined as:

1

Swish(x) = x - sigmoid(x) = x- =

(0))

class from Scikit-learn, training the model with n_est imators is a smooth function that blends past zero and has shown

= 100 and random_state = 42. The random forest re-
gression model achieved an MSE of 0.97 on the dev set, pro-
viding a stronger baseline than linear regression.

5. Experiments, Results, and Discussion

5.1 Experiments

We ran our model and iterated our experiments using Google
Colab, utilizing the Google TPU hardware accelerator, which
significantly reduced runtime.

The learning rate was tuned manually using keras .callbacks

a function for learning rate step decay. This function reduces
the learning rate when no improvement is seen within a speci-
fied number of epochs. Adjustments to the learning rate decay
and scheduling were made by monitoring the loss curve. Op-
timal results were achieved using an initial learning rate of
0.005, a minimum rate of 0.001, and a 0.2 factor drop per
reduction.

promising results in academia and industry [8].

Swish Activation Function

0

7 =) 0 2 1

X
Figure 4. Comparison of activation functions: ReLU, Leaky
ReLU, and Swish.

For each experiment, we calculated training, dev, and valida-
tion MSE. The dev dataset tracked loss per epoch alongside

the training set, generating plots of loss changes during train-
ing. Validation MSE was computed after training on a separate
subset. Figure 3 shows a subset of hyperparameter tuning re-
sults from our random search.

#0 #3 #4 #10 #13
Regularization 0.00637 0.00626 0.000135 0.00822 0.00775
Clipnorm 0.6 02 08 0.5 03
Dropout 0.05 0.2 03 0.05 0.05
of layers 7 4 5 5 10
Hidden units per layer 5[17)1911374]87 2, [76,4,25,23] [692]] 76,5, 4, 13, {1;:]7 92090, 33, %%;Q]S;ZSIW
Activation Leaky Relu Leaky Relu Leaky Relu Relu Leaky Relu
Training MSE 1.910 2.067 1.930 1.546 1.488
Dev MSE 1.814 1.778 1.670 1.593 1.543
Validation MSE 1.585 1.483 1.381 1.255 1.260

Table 3. Hyperparameter tuning experiments

5.2 Evaluation and Results
Table 4 compares the results of our best deep learning (DL)
model with two non-deep learning baseline models.

Results Training MSE | Validation MSE | Test MSE | Standard Deviation

Training: 6.5
Validation:

158 ’E

Overall: 4.6
N/A

Best DL Model | 10-layer Leaky ReLU from hyperpa-| 1.488 1.260

rameter tuning with L1

Linear Regres-| Ordinary least squares (OLS) linear 2452 2.339 2441
sion regression with L1
Random Forest |RandomForest Regressor model 0.153 1.101 1.105 N/A
with n_estimators = 100

Table 4. Results of NN architecture improvements and
hyperparameter tuning.

The training and dev MSE for our best model are shown in
Figure 5, with error bars representing variation across multi-
ple runs.

Mean Training and Validation Errors

8 1 —— Training MSE
—— Dev MSE

Log Mean Squared Error
~N

-4 4

0 20 40 60 80 100
Figure 5. Mean Log MSE from 5 runs of our best DL model
with error bars for Training and Dev MSE.

Our best deep neural network achieved an MSE of 1.488 on
the training set, 1.260 on the validation set, and 1.58 on the
test set. Across 5 runs, the standard deviation for MSE was
6.5 for training, 0.61 for validation, and 4.6 combined for

5/7

training and validation.

While our deep learning model outperformed the OLS Lasso
regression baseline, the random forest regressor achieved the
lowest MSE among all models. This aligns with the estab-
lished robustness of random forest models for structured, tab-
ular data.

5.3 Conclusion and Future Work

Among all tested deep learning models, a 10-layer network
with Leaky ReLU activation and L1 regularization performed
best, achieving an MSE of 1.488 on training and 1.260 on
validation.

Despite these results, the random forest model outperformed
both the linear regression and deep learning approaches. Fu-
ture work should explore the key differences leading to these
discrepancies.

The primary limitations of this project were time and data
collection. Data collection was time-intensive, and the dataset
required extensive pre-processing and transformations. With
additional time, we would explore implementing feed-forward
neural networks, which have shown promising results for tab-
ular data. We would also investigate alternative loss metrics
and evaluation methods.

The project’s source code and experiments can be found on
GitHub: https://github.com/rifaki/VC-Project.

A. Available Columns Provided by our
Dataset

Below is a comprehensive list of columns provided by the
dataset:

* Company Information:

— company.id, company.-name_x,
familiar_name, previous_name,
exchange, ticker, employee_count,
year_founded.

— business_status, ownership_status,
finanecing-status, universe, website,
financing-note, full-description.

¢ Financial Metrics:

- total_raised_to_date,
performance_as_of_date.

— stock.price, average:volume,
shares_outstanding, previous.close,
price_percent_change_l_week,
price_percent.change.4.weeks.

valuation_revenue,

- beta, X52_week_range_low,
X52_week_range_hi, market_cap-tso.

Location Information:

— location_.id, location_name,
address.2, city, state, zip,

— location_type, location_status,
office.phene,; o©ffice-fax.

Deal Information:

— deal_id, deal_number,
deal_date, deal_size,
post_valuation,

— deal_status, deal_class,
deal_type_2, deal_type-3.

announced._date,
pre_valuation,

deal type:l;

Financial Calculations:

- ebitda,
valuation_revenue,

— debt_ebitda, debt_equity,
revenue_percent_growth.

valuation_ebitda,

Capitalization Table:

10.

11.

- captable.id,
price.per_share.y;
shares_acquired.

- liquidation_preferences,
anti dilution_provisions.

series, stock_type.y,
shares_sought,

Final Features Used Within the Model:

. employee_count: Number of employees.

year _founded: Year the company was founded.
deal_ number: Unique deal identifier.

percent_owned: Percent acquired through the round.

. percent_acquired: Percent acquired by investors in the

round.

pre_valuation: Pre-money valuation in the round.

. raised_to_date: Capital previously raised by the com-

pany.

deal_size: Amount raised, in millions.
price_per_share: Price per share in the round.
post_valuation: Post-money valuation in the round.

business_status: Stage of the company. Options in-
clude Clinical Trials, Product Development, Generating
Revenue, Profitable, and Out of Business.

address_1,
country:

post_valuation_status.

valuation_cash_flow.
liquidation,

12.

13.

15.

16.

17.

18.

20.

21.

22.
dividend_rights,

23.
24.
25.
26.
27.
28.
29.
30.
31,

32.

33.

6/7

ownership_status: Who owns the company. Options
include Publicly Held, Privately Held (backing), Ac-
quired/Merged, and Out of Business.

financing_status: Current financing status.

. naics_codes: Industry code dictated by the North Amer-

ican Industry Classification System.
state: Country of company headquarters.

stock_type_x: Type of stock. Options include Preferred,
Participating Preferred, Combination, or Common.

deal status: Status of the deal. Options include Com-
pleted and Announced.

deal_class: Type of deal. Options include Venture
Capital and Individual.

. deal_type_2: Type of round. Options include Series A,

Series B, Series C, etc.
website: Company URL.

parent_company: Parent company of the current com-
pany.

tech_hotspot: Yes/No if the company is in a tech hotspot,
sourced from Crunchbase’s list of top recipient cities of
venture capital funding or other identified cities.
country: Country of company headquarters.

name: Company name.

board _voting_rights: Yes/No if the board can vote.
sister_companies_count: Number of sister companies.
subsidiary_companies_count: Number of subsidiaries.
customers_count: Number of customers.
market_count: Markets the company operates within.
competition: Major competitors of the company.
products: What products the company sells.
business_status: Business status. Options include Gen-
erating Revenue, Out of Business, Startup, and Prof-

itable.

elapsed_announced _deal: Time elapsed between the
announcement date and deal date.

(1]

[2]

[31

[4]

[51

[6]

[71

[8]

References

Deborah Gage. The venture capital secret: 3 out of 4
start-ups fail, 2012.

Alex Nakagawa et al. vc_holy_grail-1, 2017. Available
att https://github.com/Annyou/vc_holy_
grail-1.

Will Gornall and Ilya A. Strebulaev. A val-

uation model of venture capital-backed companies
with multiple financing rounds, 2020. Available

at: https://papers.ssrn.com/sol3/papers.

cfm?abstract_id=3725240.

F. Chollet et al. Keras, 2015. Available at: https:
//github.com/fchollet/keras.

Martin Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, et al. Tensorflow: A system for large-scale ma-
chine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
265-283, 2016.

T. E. Oliphant. A Guide to NumPy, volume 1. Trelgol
Publishing, USA, 2006.

F. Pedregosa, Gaél Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, et al. Scikit-learn: Machine learn-
ing in python. Journal of Machine Learning Research,
12(Oct):2825-2830, 2011.

Mary Ann Azevedo. Austin reaches top 10 in us venture
markets with record funding in 2019, 2020.

77

